derivéé de fcts

Voir le sujet précédent Voir le sujet suivant Aller en bas

derivéé de fcts

Message par dadou le Dim 7 Oct - 21:37

Bonjour,
SVP, indiquer moi comment dérivée la fonction suivante:
f(x)= cos (x ^ sinx)
c le x eli fou9ou la puissance

merci

dadou
Entier Naturel
Entier Naturel

Nombre de messages : 2
Localisation : tunis
Réputation : 0
Points : 3700
Date d'inscription : 07/10/2007

Revenir en haut Aller en bas

Re: derivéé de fcts

Message par Napoléon le Dim 7 Oct - 22:04

dadou a écrit:Bonjour,
SVP, indiquer moi comment dérivée la fonction suivante:
f(x)= cos (x ^ sinx)
c le x eli fou9ou la puissance

merci

Salut,
la fonction f est définie pour tout x > 0.
c'est une fonction composée de la forme cos (g(x))
Sa dérivé est f '(x) = g'(x) . [-sin(g(x))]
avec g(x) = x ^sinx.

le même probleme se pose pour la dérivée de la fonction g(x):
g(x) est de la forme h(m(x)) avec
h(x) = x^x = exp(xlogx) et m(x) = sinx
donc
g'(x) = m'(x) . h'(m(x))

Dérivons d'abord h(x) = x^x = exp(xlogx)
h'(x) = [xlogx]'.exp(xlogx)=[logx + x/x].exp(xlogx)= (1+logx) . exp(xlogx)

on en déduit que:
g'(x) = cosx . [1+log(sinx)] . exp(sinx . log(sinx))

et comme f '(x) = g'(x) . [-sin(g(x))], on en déduit que
f '(x) = cosx . [1+log(sinx)] . exp(sinx . log(sinx)) . [-sin(x^sinx)]

Conclusion a écrit:
f '(x) = - cosx . sin(x^sinx) . [1+log(sinx)] . exp(sinx . log(sinx))

Bon courage.

_________________
Nabil - tunis
خير الناس أنفعهم للناس
avatar
Napoléon
Admin
Admin

Masculin
Nombre de messages : 2934
Localisation : Tunisie
Réputation : 122
Points : 5315
Date d'inscription : 19/03/2007

Feuille de personnage
Capacité linguistique:
999/1000  (999/1000)

http://infomath.online-talk.net

Revenir en haut Aller en bas

Re: derivéé de fcts

Message par methodiX le Dim 14 Oct - 13:31

ohh - "mademoiselle" daddou. Je peux avoir une idée sur ta spécialité? fine ta9ra?

Question

_________________
Sami - Methodix, tunis
Le génie de Newton a consisté à dire que la lune tombe alors que tout le monde voit bien qu'elle ne tombe pas.
(Paul Valéry)
_____
Cliquer ici: Voir les nouveaux messages depuis votre dernière visite
Cliquer ici: Astuce: Utiliser l'outil "Recherche" du forum
avatar
methodiX
Admin
Admin

Masculin
Nombre de messages : 1260
Localisation : Le couloir de l'école polytechnique de Tunis
Réputation : 68
Points : 4697
Date d'inscription : 22/03/2007

Feuille de personnage
Capacité linguistique:
1000/1000  (1000/1000)

Revenir en haut Aller en bas

Re: derivéé de fcts

Message par suneddine le Sam 17 Nov - 1:11

j'ai dérivé la fonction d'une autre manière sans considérer une fonction composée

f '(x) = g'(x) . [-sin(g(x))] avec g(x) = x^sinx.

g(x) = x^sinx = exp(sinx .logx)

donc g'(x)=(sinx .logx)' .exp(sinx .logx)
=(cosx .logx+(sinx)/x) .exp(sinx .logx)

sont-elles égales le g' que je viens de trouver et le g' d'Admin?
avatar
suneddine
Nombre Réel
Nombre Réel

Masculin
Nombre de messages : 730
Age : 32
Localisation : tunisie
Réputation : 5
Points : 3765
Date d'inscription : 11/11/2007

Feuille de personnage
Capacité linguistique:
995/1000  (995/1000)

Revenir en haut Aller en bas

Re: derivéé de fcts

Message par Napoléon le Sam 17 Nov - 13:14

D'une part, on :
g'(x)=(cosx .logx+(sinx)/x) .exp(sinx .logx)
g'(1)=sin(1)

D'autre part, on a :
g'(x)=cosx.[1+log(sinx)].exp(sinx.log(sinx))
g'(1) n'est pas sin(1).

L'une des expressions est incorrecte. Je vais revoir le calcul.

_________________
Nabil - tunis
خير الناس أنفعهم للناس
avatar
Napoléon
Admin
Admin

Masculin
Nombre de messages : 2934
Localisation : Tunisie
Réputation : 122
Points : 5315
Date d'inscription : 19/03/2007

Feuille de personnage
Capacité linguistique:
999/1000  (999/1000)

http://infomath.online-talk.net

Revenir en haut Aller en bas

Re: derivéé de fcts

Message par Napoléon le Sam 17 Nov - 13:23

Tu as bien fait de me signaler l'erreur mosa.
En fait, une erreur s'est glissée lorsque j'ai considéré que
x^sinx est la composée de x^x et sinx.
Ce qui est faux, car cette composée donne sinx^sinx.

Donc si tu peux, termine l'exercice et poste le.
cheers

_________________
Nabil - tunis
خير الناس أنفعهم للناس
avatar
Napoléon
Admin
Admin

Masculin
Nombre de messages : 2934
Localisation : Tunisie
Réputation : 122
Points : 5315
Date d'inscription : 19/03/2007

Feuille de personnage
Capacité linguistique:
999/1000  (999/1000)

http://infomath.online-talk.net

Revenir en haut Aller en bas

Re: derivéé de fcts

Message par suneddine le Sam 17 Nov - 18:30

je termine;

on disait que f '(x)= g'(x) . [-sin(g(x))]
avec g(x)= x^sinx
on a trouvé que g'(x)= (cosx .logx+(sinx)/x) .exp(sinx .logx)

d'où f '(x)= -(cosx .logx+(sinx)/x) .exp(sinx .logx). sin(x^sinx)
avatar
suneddine
Nombre Réel
Nombre Réel

Masculin
Nombre de messages : 730
Age : 32
Localisation : tunisie
Réputation : 5
Points : 3765
Date d'inscription : 11/11/2007

Feuille de personnage
Capacité linguistique:
995/1000  (995/1000)

Revenir en haut Aller en bas

Re: derivéé de fcts

Message par Napoléon le Sam 17 Nov - 18:33

Merci pour la rectification.

_________________
Nabil - tunis
خير الناس أنفعهم للناس
avatar
Napoléon
Admin
Admin

Masculin
Nombre de messages : 2934
Localisation : Tunisie
Réputation : 122
Points : 5315
Date d'inscription : 19/03/2007

Feuille de personnage
Capacité linguistique:
999/1000  (999/1000)

http://infomath.online-talk.net

Revenir en haut Aller en bas

Re: derivéé de fcts

Message par Contenu sponsorisé


Contenu sponsorisé


Revenir en haut Aller en bas

Voir le sujet précédent Voir le sujet suivant Revenir en haut


 
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum